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Abstract  

The risks associated with pregnancy have been of the greatest challenges that have drawn the 

attentions of researchers, statisticians, medical practitioners, families and even the pregnant 

women themselves. These challenges has called for concern among stakeholders, therefore, 

this study was targeted at modeling maternal mortality data of some selected health facilities 

in Rivers state using Poisson Regression model. To achieve this target, the study aim of the 

study was to model maternal mortality rate in some selected Health in Rivers State, while the 

specific objectives of the study include to: assess factors that contribute to high rate of maternal 

mortality rate in Rivers State. Secondly, was to fit an appropriate model to data on maternal 

mortality rate in Rivers State and to select an appropriate fitted model in estimating and 

modeling of maternal mortality rate in Rivers State. The data for the study was source for and 

extracted from the Rivers State Hospital Management Board. The data extracted was analyzed 

using statistical software called STATA version 14. The results obtained revealed that the 

Poisson regression, Poisson Generalized Regression, the Negative Binomial Regression and 

truncated Regression model cannot actually captured  the excess Zeros contain in the data and 

the issue of over dispersion. So, other form of Poisson Regression models such as Zero-inflated 

Poisson Regression and Zero-inflated Negative Binomial Regression were also used in the 

estimation. However, zero-inflated Negative Binomial Regression has the least Akaike 

Information Criterion (AIC) based on the selections of the overall best fitted model. Hence, 

recommendation were made base on the results from the findings.                        

 

Keyword:  Modeling, Maternal, Mortality Health, Facility 

 

Introduction 

1.1 Background to the Study 

Maternal mortality has become a very significant determinant of human and social 

development. It is particularly exposes women’s overall status, access to health care, and the 

responsiveness of government to the health care system needs of her citizens.  Therefore, 

awareness of maternal mortality levels is very important not only for identifying the risks 

associated with pregnancy and childbearing, but also for what it says about women’s health 

and, indirectly, their economic and social status. Determining the level maternal mortality and 

the associated risk factors is necessary in order to be able to diagnosed issues and assessing the 

advancement and effectiveness of existing maternity  programs in Rivers state and Nigeria at 

large. 

 

Also, in life women having pregnant and giving birth to children are two physiological events 

that comes with joy to the women, the husband, family and the society in general as it is a 

fulfillment of God’s commandment that we should go into the world and multiply. However, 

sometimes in life, the reverse is case as it is occasionally a source of sorrow. According to 
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Salifu (2004) for some women in certain parts of the world specifically in developing countries, 

the reality of giving birth to children is often grim. For those women, giving birth to children 

is often marred by unforeseen challenges that sometimes lead to loss of lives (mother and 

child). Some women loss the fetus even before being given birth to or immediately after birth, 

whiles others loss both their lives and the fetus. 

 

In Nigeria today maternal period is prone to crises due to so many factors such as Socio – 

economic, religious and biological factors all theses interact as well interface with each other. 

A culmination of these factors couple with other cultural beliefs and practices such gender 

biasness, low status of women in the society, and high fertility affect child delivery in Nigeria. 

According to the WHO (2012), maternal mortality could be referred to as the death of women 

from any cause related to or attributed to pregnancy or its management (excluding) accidental 

or incidental causes during pregnancy and child bearing or within 42 days of termination of the 

pregnancy, irrespective of the duration and size of the pregnancy. According to the current 

estimation by the world health organization (WHO), the United Nation Children Fund 

(UNICEF) and the World Bank about size hundred thousand (600,000) women die yearly as a 

result of pregnancy-related complications and 99% of it occur mostly in less developed 

countries in the world.  

 

Sequel to the above, this situation makes maternal mortality an indicator in the health sector 

that shows the largest disparity between developed and developing countries in the world. 

According to MCA lister and Basket (2006), in sub – Saharram Africa one out of every 13 

women that gave birth during child bearing dies of pregnancy-related causes during their life 

time as compare to one in 4085 women in most globalized countries. Also, WHO, UNICEF 

and World Bank (2008) estimated the number of women that die as a result of pregnancy-

related causes  to be in the ratio of one is to 45. They further to suggested  that for every 

maternal death an approximated  number of 30 women suffer one form of injuries, 

complications, infections  and disabilities during pregnancy or child bearing in at least in 15 

Million women in a year.  

 

It is therefore very obvious that developing countries in the world continue to have the highest 

number of cases of women that dies as a result of pregnancy- related issues. Sahfu (2014) 

attributed the causes of these challenges to lack of access to skilled delivery care that will 

reduce maternal, prenatal mortality and morbidity. The need for reduction in maternal mortality 

has actually generated a lot of concern among corporate organizations, Non – government 

organization (NGOS), international community and researchers  alike especially in view of its 

spontaneous increase with a corresponding devastating effects on the women, their  families 

and society in general. The importance of this condition resulted to most notably the launching 

of the Millennium development goals (specifically) NDG 5: Improving material health), global 

strategy for women’s and children Health in the year 2010 by the United Nations (UN). 

Secretary – General which was greeted with high profile Global pronouncement.  

 

Subsequently, the high – level commission on information and accountability to determine the 

most effective and international institution arrangement for global reporting oversight and 

accountability on women and their children’s health, one women and their children’s health. 

One among the ten recommendations of the commission was specifically to improve measure 

on now to reduce maternal (and children) death. The recommendation required that by 2015 

all countries should take steps to establish a system for the registration of births, deaths and 

causes of death and have well – functioning health information systems that combine data from 
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facilities, administrative sources and survey (WHO, 2014). This provided an opportunity to 

ensure risk of material mortality is minimized for all concern.  

 

The Government of Rivers State has not done much in this area except the introduction of free 

antenatal care for all pregnant women from November, 2014 and the exception Laws that was 

pass which makes child delivery care free that was also put in place.  

The driving force of these polices have been to improve uptake, quality financial and 

geographical access to child delivery care services. According to the Rivers State Government, 

these services as reflected in the policy covered assisted deliveries such as caesarean section 

and management of medical complications; normal deliveries and surgical complications due 

to deliveries for the repair of Visio-vaginal and recto – Vaginal fistulae. Although, this 

exemption policy (Laws) does not covered delivery services in private and faith – based health 

facilities (Hospital own by Churches). 

 

In spite of these initiatives by government, corporate and international communities there are 

still challenges facing women during pregnancy and child bearing. Actually, from the existing 

literature in this area must emphasis has not been done on the statistical approach to solving  

this problem using Poisson regression, Negative Binomial Regression, Zero – inflation Poisson 

and Binomial regression,   and truncated regression models. According to Ayumanda et al, 

(2013), all these models fall under the category of the count models those are suitable for 

analyzing discrete data rate whereby the mean of the distribution is equal to the variance 

process. Although, there are avalanched of models in modeling maternal mortality rate but 

most of these models exhibit some limitations. This study, therefore target at filling the existing 

gaps in  literature related to the study, it is against this background that this study among other 

things was targeted at developed model for modeling material mortality rate in selected Health 

facilities in  Rivers State.  

 

3.1  Methodology 

This chapter shall be discussed under the following sub-headlines; Research Design, model 

specification, justification for the model specification, sources of data, estimation technique 

and procedures. 

 

3.2 Model Specification  

In line with the purpose of the study, the models adopted in the study are Poisson regression, 

Generalized Poisson Regression, Negative Binomial Regression, Zero-Inflated Poisson Zero-

Inflated Generalized Poisson, Zero-Inflated Negative Binomial  and The truncated Poisson 

Regression Model  and they are  stated  as thus; 

 

3.2.1. Poisson Regression Model  

According to Nwanko and Nwaigwe (2016), Poisson regression models are generalized linear 

models with logarithm as the link function. In statistics, the generalized linear model (GLM) 

is a form of flexible generalization of ordinary linear regression that allows for response 

variables that have error distributions models other than a normal distribution. The generalized 

linear model comprises of linear predictor, given as  

i  =  0  +  1 Xi1  + ……..+ k  Xik            (3.1) 

The two functions are given statistical as thus: 

The first link functions describes how the mean E(Yi) = I, depends on the linear predictor 

 (i) = I         (3.2) 

The second link functions describes how the variance, var(Yi) depends on the mean  
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 Var(Yi) = var()        (3.3) 

Where the dispersion parameter  is a constant suppose Yi Poisson (i), then  

 E(Yi) = i, var(Yi)   =   I       (3.4) 

Therefore, our variance function; 

 Var(i) =  i         (3.5) 

And the link function must map from (0,). A national choice given as  

(i)  = loge(i)  =  loge(i)        (3.6) 

The generalized linear regression model (GLM), by according to Nwankwo et al., (2016) by 

allowing the linear model to be related to the response variable via a link function. The link 

function here is the function that links between the linear model in a design matrix and the 

Poisson distribution function.  Supposing a linear regression model as  

Yi = iXi  x  i          (3.7)  

If XE IRn, is a vector of independent variables  

 Y = X  x           (3.8) 

Where X is an nx(k + 1) vector of independent variables of predictors, and a column of I’s  is 

a  

(k + 1) by 1 vector of unknown parameters and  is an n x 1 vector of random error terms with 

mean zero.  Therefore, 

E(Y/X) = X          (3.9) 

Recall that the Generalized linear models, where the link function and its transport Y as; 

G(y)  = loge (y)                    (3.10) 

 

Therefore, this can be written in more concise firm as; 

Loge E(Y/X)  =  X                   (3.11) 

Thus, given a poisson regression model with parameter  and its input vector X, the predicted 

mean of the associated poisson distribution is given as; 

 E(Y/X) = eXB                   (3.12)  

 

Suppose Yi are independent observation with a responding values Xi of the predicted variables, 

then  can be estimated using the maximum likelihood estimates according to Nwanko and 

Nwaigwe, (2016) lacks a closet – form of expression and must be estimated by numerical 

methods. He further opined that the probability surface for maximum – likelihood Poisson 

regression is always convex such that Newton-Raphson of other gradients –based methods are 

the appropriate estimation techniques. 

Therefore, suppose Yi is a random variable and it takes non-negative values such that i = 1, 2 

…… n, where n is the number of observations. Since yi follows a Poisson distribution, therefore 

the probability mass function (PMF) is as thus: 

 
 

,
!Yi

YY i

yi

i
ii








 yi = 0, 1, 2      (3.13) 

With mean and variance as  

E(yi) = Var(yi) =  i         (3.14) 

Where the conditional mean (predicted mean) of the Poisson distribution as given in equation 

(3.12) above specified as; 

 E(Y/X) = exB  = i = E(yi)       (3.15) 

Where it is the value of the explanatory variable  = (B1, B2….Bk) are unknown K – 

dimensional vector of regression parameters. The mean of the predicted Poisson distribution is 

given as E(Y/X) and its corresponding variance of Yi as var(Y/X). 
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Maximum Likelihood Estimation of the Parameter () in Poisson Regression Model 

above  

According to Nwankwo and Nwaigwe (2016), the parameter  can be estimated using the 

maximum likelihood estimation method (MLE). Given that  

yj

e iiy

i
n

c









1

)(         (3.16) 

The log-likelihood function id given as this  

In  



n

i

iiii yIny
1

! In  )(        (3.17) 

Recall that  x

i  , hence substitute it in the above equation we have. 

 



n

i

i

x

i yInxyIn
1

! )()(             (3.18) 

Differentiating equation (3.18) with respect to  and equating the derivative to zero, we have 

  kixxy
In n

i

i 






2,1 .0)exp(
)( 

1





     (3.19)  

This yields K-nonlinear equations and can be solved using the Newton-Raphson method. 

 

Also, it is noted that where. 

 

3.2.2 Generalized Poisson Regression Model  

The Generalized Poisson Regression model According to Nwankwo (2016), one of the 

advantage of using the generalized Poisson regression model is that it can be fitted for condition 

of over-dispersion i.e. where var(yi) > E(yi) as well as under-dispersion, var(yi) < E(yi). Famoye 

(1993) Wang and Famoye (1997) suggested that when yi is a count response variable and its 

follows a Generalized Poisson distribution, the probability density function of yi, i = 1, 2 ….. 

n is given as       

 f(yi) = (yi = yi) = 
   

  























i

ii

i

yi

i

y

ii

i yV

y

y
i









1

1
exp

!

1

1
  yi = 0, 1, ( 3.20) 

where , mean E(yi) = i and variances var(yi) = (+,i)
2      

Where  is called the dispersion parameter the generalized Poisson distribution is a natural 

extension of the Poisson distribution (Nwakwo and Nwaigwe, 2016). When  = 0, equation 

(3.21) reduces to the Poisson (as in equation 3.13), resulting to var(yi) = E(yi). when  > 0, it 

means var(yi) and the distribution represents count data with over-dispersion if  > 0, it means 

var(yi) < Eayi), the distribution represents count data with under-dispersion.  Supposing it is 

assumed that the mean of the fitted value is multiplication i.e. Ecyi(x) i = ei exp(i ) Where 

ei denotes a measure of exposure similarly xi apx1 vector of explanatory variables and B a Px1 

vector of regression parameters (Nwonkwo and Nwaigwe, 2016). 

Maximum Likelihood Estimated of the Parameters ),( 


of the Generalized Poisson 

Regression Model. 

According to Wang and Famoye (1997), the long-likelihood functions of the generalized 

Poisson Regression model is define as this;  

 i

n

i i

i
iii

i

i
i y

y
yyy log

1

1
)1log()1(

1
log),(

1


























 







     (3.21) 
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Hence, the maximum likelihood estimated ),(  will be obtained by maximizing   ,  with 

respect to  and . The given equations are as follows;  

Let     iiii xxyE exp/  , taking the partial derivative for  

   

 










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
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
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,2,1 0
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,

1
2

j
xyn

i i

ijiii
     (3.22) 

Similarly, the partial derivative for  

     
 
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 
    (3.23) 

 

According to Nwankwo and Nwaigwe (2016), the parameter  and  are estimated by the 

Newton – Raphson method. In like manner, it can also be estimated using method of moment. 

This will involved equating the Poisson chi-square statistic with (n-p) degree of freedom, as it 

was suggested in Breslow (1990) and it is stated as thus;  

    
 
 

pn
yn

i ii

ii 




1

2

2

1 


     (3.24) 

Where n is the number of values and p is the member of regression parameters.  

 

3.2.3 Negative Binomial Regression (NBR) 

Also, another model used in this study was the Negative Binomial Regression (NBR) model. 

One important application of the negative binomial regression, according to Nwanko et al., 

(2016) is that it comprises of a mixture of a family of Poisson distributions with GAMA mixing 

weights. It is seen as a generalization to Poisson distribution. It is a form of regression whereby 

the Poisson parameter itself is considered a random variable, distributed according to a GAMA 

distribution under and so, it is otherwise referred to as Poisson – GAMA mixture. As it is an 

alternative to Poisson regression, the negative binomial regression captured the issues of over-

dispersion by incorporating a dispersion parameter to accommodate an unobserved 

heterogeneity in the count data.  According to Greenwood and Yule (1920), as the name of the 

distribution implies i.e. Poisson-GAMA, it is a mixture of two distribution of the same family 

of functions that has a closed form which leads to the negative binomial distribution. Cook 

(2009), observed that the name of this distribution came into being by the application of the 

binomial theorem with a negative exponent. These two regressions were developed to measure 

over-dispersion that are commonly observed in discrete or count data (Lord et al, 2005). 

Similarly, the model is specified as thus:  

Supposing we have a series of random counts variables that follows a Poisson order such that: 

  0,0,, 








y
y

YF
ij

y

i

iij

i
         (3.25) 

Where yi is the observed number of counts for i = 1, 2, ..… n and i is the mean of the Poisson. 

 

According to Cameron and Trivedi (1998), supposing the mean is assumed to have a random 

intercept term and the said term is a conditional mean function in its multiplication order then 

we have the following relationship.  

 ijjii X   

k

1j0exp         (3.26) 

 ijjii X    0

k

1j          (3.27) 

   i

jij

k

ji X
  10          (3.28) 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 5 No. 1 2019 

www.iiardpub.org 

  

 

IIARD – International Institute of Academic Research and Development 

 
Page 7 

iii V   

Where  i   - gamma    i  0;, 11   is define as a random intercept. 

 jjii X  k

1j0exp   is the log-link between the Poisson mean and the covariates of 

independent variables o

sX  and s'  are the w-efficient of the regression. The marginal 

distribution of yi can be obtained by integrating the error term, Vi Therefore, f(yi,i) = 

    iiiii dvVhVyg


0
,,       

f(yi,i) =   eii VygEv ,,               (3.29) 

where h(Vi) is a mixing distribution. In the case of the Poisson – GAMMA mixture, g(yii, ij, 

Vi) is the Poisson distribution and h(Vi) is the GAMMA distribution component of the model. 

The closed form that leads to negative binomial distribution are given as thus:  

Supposing the variance Vi have two parameters of Gamma distribution. 

 h(vij , ) = 
 

0,0,0
1






i

vi

i VV 

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

       (3.30)        

Where E(Vi) = 



  and    Var(vi) =  

2

 




   , Let  = , we have , E(vi) = 1 and var(vi) = 



1
  

Cameron and Trivedi (1998) observed that the transformation of the gamma distribution as a 

function of the Poisson mean gives a probability density function (pdf) as; 

 h(i, , ) = 
 

 








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i

i

i 



 1/
        (3.31) 

Combating equations (3.30) and (3.31) into equation (3.29) gives the marginal distribution of 

yi: 
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Using the properties of the gamma function and let  = , hence equation (3.31 ) is reduce to 

the define equation given as  
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Therefore, equation (3.35 ) above become the pdf of the Negative Binomial Regression.  

Also lord and park (2014) suggested that the mean and variant are as follows; 

E(yi, , i) = I         (3.36)  

Var(yi, , i) = 





2

i          (3.37) 

After the above links between models have been established, the next step involved the 

definition of the log-likelihood function and this is demonstrated in lord and park (2013) as 

thus; 
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In
 
 

 















 1

0

y

j

i jIn
y





          (3.38) 

Substituting equation (3.28) and (3.26), the log-likelihood function can be computed using the 

logarithmic function givens as; 

       


























 




 iiii

y

j

n

t

InyInyInyiyInjInLIn  11,( 11
1

01

 (3.39)   

Hence, the log-likelihood function becomes  

          





















 



 111

11

11
1

,( 



 InFynyInInInyLn

iii

i

i
n

i          (3.40) 

 

(i) Zero-Inflated Regression Model 

The zero-inflated (Zero inflated Poisson, Zero-inflated Generalized Poisson Regression, Zero 

inflated Negative Binomial Regression) according to Hu, Pavlicova and Nunes (2011) have 

been developed to deal mostly with the excess zeros in the observed outcome of data. Although, 

they are quite different in application, interpretations as well as usage in analyzing of count 

data unlike other model. According to Yusuf, Afocabi and Agbaje (2018) both models 

combined binomial probabilities in their estimation with either negative binomial or positive 

regression model. They are otherwise referred to as 2-part models (Data generating process).  

 

Considering the number of maternal death mentioned by the number of antennal visits, a 

pregnant woman might have had zero antennal clinical visits during the period under 

consideration maybe as a result of the two data generating processes. Therefore, the study 

consider the following Zero-inflated models 

 

(ii) Zero-Inflated Poisson Model 

According to Yusuf and Ughali, (2015), the zero-inflated Poisson Regression model was 

introduced by Lambert in 1992 and this model according to Hur, Hedeker, Henderson, Khuri 

and Daley (2002) allows for covariates for both the binary and Poisson parts of the model. This 

is commonly used to model count data with excess zeros. The assumption of this model is that 

with probability if the only possible observation is zero and with probability (1-) a Poisson 

()distribution is observed. The other count (data) generating process, for a pregnant woman 

which could visit Anatenal facility, has a Poisson with parameter  =   and the probability 

mass function expressed as thus  

 
 

!

exp

i

y

ii
i

y
yg

i
               (3.41) 

This follows that the numbers of visits y has a Poisson distribution with a conditioning means 

that depends on an individual’s   xi such that this follows that the number of visits y has a 

Poisson distribution with a condition y mean that depends on an individual’s xi such that; 

   iiiin xyE  /      Where log(i) = xi <=> i =  .exp 1

ix   

With the probability mass function of count process as refine in equation (*), the zero-inflation 

model is defined as thus; 

       
 









 0,
!

exp
10,exp1,/ i

i

y

ii
iiiiiiii y

y
FyFFzxy

i
   (3.42) 

The conditional mean of yi and conditional variance are respectively expressed as thus;  

   Iiiii FzxyE  1,/  ,      Iiiiiiii FzxyEzxyVar  1,/,/  
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 (iii) Zero – Inflated Negative Binomial Model: 

Green (1994) described zero-inflation negative Binomial model as an extended form of the 

negative binomial regression models for excess zero count data. This is revived from a Poisson 

distribution with parameter  -  and its corresponding mass function as it is shown above. 

Hence, by specifying the negative binomial distribution for the second count in the generation 

process as shown above, we have  

  
iy

i
i

i

i

y

y

yg 












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
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


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

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
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










11

1

!
1

1
1

      (3.43)      

The zero-inflation negative Binomial (ZINB) model is thus given as follows: 

     

































































 












 1

11

1

!
1

1

10,
1

1
1,/

11

i

y

i

i

i
i

i

iiiiiii y

y

y

FyFFzxy

i


















       (3.44) 

Where  (alpha) is the over-dispersion parameter since increasing  increases the conditional 

variance of y and both the conditional of yi and conditional variance are shown respectively to 

be as thus: 

 E(yi/xi,zi) = i (1- FI)    and   V(yi/xi,zi) = E(yi/xi,zi) = [1+i (FI + )] 

Note: supposing  = 0, it then means that the mean and variance are the same, and we have a 

Poisson model. According to Yusuf et al, (2018), the zero inflation Poisson and zero-inflation 

Negative Binomial models are used to correct over-dispersion that arises when the variance is 

greater than the conditional mean.  

 

(iv) Truncated Regression Models 

In the estimation as well fitting data to a trimated regression model, it the distribution of the 

error terms in the latent variable model is assured to be known. Then, the most common 

assumption of Herror distribution terms are said to be normally independently and identically 

distributed as such the latent variables Xt with it probability o

tY is included in the simples. 

Hence; 

Pr (
0

tY >) = P (Xt  + t >)  

=1-Pr (t - Xt) =1 - 






 






t

t XPr = 










tX1   =  










tX   (3.45) 

 

Where o

tY  O and yt is observed, the density of yt is proportional to the density of yt is 

proportional to the density of o

tY . Otherwise, the density of yt = .  The factor of proportional, 

considered to ensuring that the density of yt integrates to unit it become the inverse of the 

probability that yt
0

 >0. 

 

Therefore, the density of yt can be written  















 







t

t

X

Xt

1 y 

   

This simply implies that the log likelihood function, which is the sums of the overall t of the 

log of the density of yt condition  0yn   t become 
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

  (3.46)  

 

3.4 Model Selection Test 

Model selection shall be done using two criteria which include: the Akaike information criteria 

(AIC) and Bayesian information criteria (BIC). The Akaike information criteria (AIC) is one 

of the most suitable and commonly used fitness statistics test (Hube, 2014). According to 

Nwankwe et al, (2016), it measure of the relative quality of a statistical model for a given set 

of data. In a given set of statistical models used in estimating and fitting a data set, the most 

preferred model among the set of statistical model is the one with the minimum AIC value i.e. 

the model with the smallest AIC value is the best model.  It does not only reward model 

goodness-of-fit but also levies penalty on an increasing function of the number of estimated 

parameters (Deebom and Didi, 2017). It is refine as shown below in the two formulae: 

 AIC(n) =  KL
n


 2

         and    AIC(1) = -2[L – K] 

Where K is the number of predictors including the intercept, while AI(1) is usually an output 

by statistical of software applications.  L is the maximized value of the likelihood function for 

the model  

 

Similarly, Bayesian information criteria (BIC) according to Hube (2014) have three for 

mutations and they include as it is define in (Schwart, 1978). 

 BIC(R) = D – (df) In (n) 

 B1C(L) = -2L + Kin(n) 

 BIC(Q) = 
n

2
(L – Kin (K)) 

Where df is the residual degree of freedom 

 BIC (L) is given as SC in SAS and BIC in other software . L represents the log 

likelihood  

 

3.5 Source of Data 

Data used in the study was sourced for and extracted from the Rivers state Hospital 

Management Board Record. The Variables comprises of weekly data extracted from 2013 -

2017, making it a total of 357 data points. The variables of interest for the study are classified 

into two: Direct and Indirect causes maternal mortality other conditions incorporated into the 

classifications were supervised deliveries, maternal mortality ratios, delivery type and outcome 

of delivery, duration of stay at the hospital, gravid, parity and age. Statistical package STATA 

version 14 was used in analyzing the data. The Direct causes of maternal mortality were said 

to include those resulting from obstetric complications as at the pregnancy state. For examples, 

Obstetric, hemorrhages or hypertensive disorders, anesthesia, caesarean sections. Indirect 

Causes of maternal Mortality were those deaths resulting from previously existing diseases or 

conditions developed within the pregnancy period or an aggravation from existing conditions. 

For example an existing cardiac or renal diseases, ecclampsias, Sepsis, obstructed labor, 

Malaria related sickness. Also, maternal mortality could occur by one or multiple causes as 

classified above, however, 1 is indicated in the data extracted; this means the cause of maternal 

death is one and can be either of the causes listed above.  Similarly, where n≥ 2 means that 

there are two or multiple causes of maternal mortality and so on. 
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3.6 Model Estimation Procedure/ Techniques 

Summary Descriptive Statistics 

This is done to ascertain the summary descriptive statistic involving the mean and variance.  

 

Multi-Collinearity Test Statistics 

According to Nwankwo et al., (2016), multi-nonlinearity test statistics otherwise referred to as 

Collinearity is a statistical occurrence in which two or more predictor variables in multiple 

regression models are largely corrected. This simply means that one can be linearly predicted 

from the others with non-trivial degree. Conversely collinearity can be said to occur when two 

or more independent variable are highly correlated. Ayunanda et al (2013) observed that this 

needed as an initial assumption for parameter estimation and one informal way of revealing 

this is by the use of the variance inflation factors (VIF). This is said to occur if the variance 

inflation factor value is greater than all the variables can be included in the subsequent analysis 

modeling with Poisson regression, generalized Poisson regression etc.  

The variance inflated factor (VIF) used in testing for the presence of multi-collinearity is define 

as this  : 
21

1

jR
VIF


     , Where 2

jR  represent the co-efficient of determination of a regression 

of the explanatory variable j on all the other explanations. 

 

3.7 Parameter Estimation of the Counts Models Family 

The count models (Poisson regression, negative, Binomial Zero-inflation and truncated 

regression models) Estimation of Parameters and done to be sure of the co-efficient of each of 

the model specified in the study. 

 

4.1 Results 

The data analyzed are presented under the following sub-headings: Summary Descriptive 

statistics of the variables used in the study, Bar Charts, Multi-collinearity test results, 

Estimation Results of Poisson Regression, Poisson Generalized Regression, Negative Binomial 

Regression, Truncated Regression, Zero-inflated Poisson Regression, Zero- inflated Negative 

Binomial Regression Model, Estimation Results for Model selection and Fitness, Model 

Diagnostic Tests. 

 

Table 4.1: Maternal Mortality Data Extracted from Health Facilities in Rivers State. 

Variable  Observations Mean  Std-Dev Min  Max 

Maternal Death(MD) 357 18.894 19.546 0 95 

Direct Causes of Maternal 

Death(DCD) 

357 3.518 2.842 0 9 

Indirect Causes of Maternal 

Death(ICD) 

357 2.670 1.912 0 16 

Source: Researcher’s Computation, 2018 using STATA Version 14 
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Table 4.2: Multi-Collinearity Test Results 

Variables VIF 

VIF

1
 

Direct Causes of Maternal Death(DCD) 2.050 0.487 

Indirect Causes of Maternal Death(ICD) 2.050 0.487 

Mean VIF 2.050  

Source: Researcher’s Computation, 2018 using STATA Version 14. 

 

Table 4.3: Estimation Results of Poisson Regression, Poisson Generalized Regression, 

Negative Binomial Regression and Truncated Regression 

Model Indicator Co-eff Std Error Z P>/z/ 

Poisson Regression Constant 2.180 0.024 89.41 0.000 

Direct Cause of Death(DCD) 0.113 0.07 19.86 0.000 

Indirect Causes of Death(ICD) 0.098 0.005 19.86 0.000 

  P-value   

Deviance  4793.606 0.000   

Chi-square 5585.687 0.000   

AIC 6232.64    

BIC 6243.94    

Negative  

Binomial Regression  

Constant 1.954 0.102 19.23 0.000 

Direct Cause of Death(DCD) 0.168 0.040 4.20 0.000 

Indirect Causes of Death(ICD) 0.112 0.025 4.38 0.000 

Model fitness     

AIC 2738.043    

BIC 2753.554    

Generalized Poisson 

Regression  

Constant 5.116 1.572 3.25 0.001 

Direct Cause of Death(DCD) 2.277 0.673 3.38 0.001 

Indirect Causes of Death(ICD) 2.189 0.453 4.83 0.000 

AIC 3036.878    

BIC 3048.511    

Truncated  

Model 

Constant 4.99 0.072 694.10 0.000 

Direct Cause of Death(DCD) 0.025 0.028 9.15 0.000 

Indirect Causes of Death(ICD) 0.033 0.002 17.85 0.000 

Model fitness     

AIC 25702.01    

BIC 25713.64    

Source: Researcher’s Computation, 2018 using STATA Version 14. 
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Table 4.4: Estimation Results for Zero-inflated Poisson Regression and Zero- inflated 

Negative Binomial Regression Model 

 

Model Indicator Co-eff Std Error Z P>/z/ 

Zero- inflated 

Poisson 

Regression 

Constant 2.404 0.026 92.49 0.000 

Direct Cause 

of 

Death(DCD) 

0.820 -0.077 92.49 0.000 

Indirect 

Causes of 

Death(ICD) 

0.085 0.050 17.15 0.000 

Inflated  

Constant 22.261 11370.56 -

0.000 

0.997 

Indirect 

Causes of 

Death(ICD) 

-44.407 14012.06 0.000 0.998 

AIC 5527.327    

BIC 5546.715    

Zero- inflated 

Negative  

Binomial 

Regression  

Constant 2.3604 0.093 25.40 0.000 

Direct Cause 

of 

Death(DCD) 

0.0921 0.0326 2.83 0.005 

Indirect 

Causes of 

Death(ICD) 

0.0876 0.0212 4.13 0.000 

Inflated 

Inalpha  -0.506 0.0815 -6.21 0.000 

Alpha  0.602 0.049   

Source: Researcher’s computation, 2018 using STATA version 14. 
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Table 4.5:  Estimation Results For Model Selection Fitness and It Extensions with Their 

Corresponding AIC, BIC and -2log-Likelihood (-2ll).  

Source: Researcher’s computation, 2018 using STATA version 14. 

Overall Best fitted Model: Zero –Inflated Negative Binomial Regression 

 

6.2 Conclusion 

The research was aimed at first, to examine the significance of the occurrence and incidence of 

maternal mortality in Rivers state and secondly to assess the factors that may likely contribute 

to maternal mortality in some selected Hospital in Rivers state. The Poisson regression, Poisson 

Generalized Regression, Negative Binomial regression, truncated Regression model, Zero-

inflated Poisson and Zero-inflated Negative Binomial Regression for the occurrence of 

maternal mortality in Rivers state were considered. In conclusion, in analyzing as well as fitting 

maternal mortality data with Poisson regression model with unique sources of excess zeros 

such as in the case of some selected hospital facilities in Rivers state, the zero-inflated negative 

binomial regression should be considered appropriate in the estimation. 

 

6.3 Recommendations 

In the words of Jin (2008), opined that increases the risk and uncertainty of external transactions 

and predisposes a country to related risks. Considering the level of risk that accompanies 

pregnancy and the corresponding investment government has made in order to reduce maternal 

mortality which has not yield the much needed results. The study carefully advised and 

recommends to medical practitioner, statisticians, policy makers and the pregnant women   the 

following: 

 The Rivers state Government in collaboration with  the state and federal Ministry of 

Health (MOH) should as a matter of urgency equip hospital and  clinical facilities in 

the state with the necessary infrastructure and well-trained medical personnel   

(Gynaecologist) in order to  deal with cases  complications during pregnancy  .  

 The Rivers state and federal Ministry of Health (MOH) in Nigeria must provide clinics 

with three or more midwives in all the hospital and clinical facilities in the country. 

 There should be sensitization and massive campaign on the need and importance of 

antennal visits for pregnant women.  

 Government, stakeholders and policy makers should as a matter of urgency evaluate as 

well as do an appraisal all the current existing intervention maternal health programs 

since they seem not to have yielded the expected results within the past. 

 Since the study have revealed that direct cause of death such as parity, age and delivery 

type contributes significantly to maternal mortality at the selected health facilities in 

Model(s) AIC BIC -2ll Overall Best 

fitted 

Poisson 6232.308 6243.94 -3113.154  

Poisson Generalized  3036.878 3048.54 -1515.434  

Negative Binomial Regression 2738.043 2753.554 -1365.022  

Truncated model 25702.01 25713.64 -12848  

Zero –inflated Poisson 

Regression 

5527.327 5546.715 -2758.663  

Zero –inflated Negative 

Binomial Regression 

2546.043 2569.282 -1365.022 2546.043 
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Rivers State under the study.  It is necessary for management of health facilities to put 

in more effort at implementing existing programs aimed at reducing the problems 

associated with maternal mortality. 
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